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Why is fairness important? (1/3)

• We usually distinguish between two classes of behavioural properties of distributed

systems

• Safety properties: “Something bad will never happen”

• Liveness properties: “Something good will eventually happen”

• In many cases liveness properties cannot be proven without making some assumptions.

• Fairness is considered a reasonable and useful assumption
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Why is fairness important? (2/3)

• Weak fairness: if an event is continuously enabled it will occur infinitely often

• Strong fairness: if an event is infinitely often enabled it will occur infinitely often

• Both weak and strong fairness can be expressed in LTL

• Weak fairness: 23(¬en ∨ oc).

• Strong fairness: 23(en) ⇒ 23(oc)
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Why is fairness important? (3/3)
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• Accessibility does not hold if we do not assume that the transition goCrit is strongly

fair w.r.t. each instance.
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The old solution

• We remember that fairness can be expressed in LTL

• Thus we verify the formula“fairness ⇒ property”

• Sometimes an explicit scheduler has to be modelled, in order for this to work.

Slide 5 ICATPN 2001



Drawbacks of the old solution

• Model checking LTL is PSPACE-complete in the size of the formula

• May require changes in the model (adding scheduler)

• Adding scheduler can reduce the concurrency in the model, affecting some partial

order methods.
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Solution: Fair Coloured Petri Nets

A fair CPN (FCPN) is a triple ΣF = 〈Σ, WF , SF 〉, where Σ is a CPN, and WF =

{wf1 , . . . , wfk} is a set of weak fairness functions, where wfi is function from transitions

to boolean valued expressions. SF is the corresponding set of strong fairness functions.

• Fairness is made a part of the model

• The fairness functions singles out the instances which are to be treated fairly.
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Example
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Fair Kripke Structure

A fair Kripke structure (FKS) is a quintuple KF = 〈S, ρ, s0,W,S〉, where S is a

set of states, ρ ⊆ S × S is a transition relation and s0 ∈ S is the initial state.

• The fairness requirements are defined by a set of weak fairness requirements W =
{J1, J2, . . . , Jk} where Ji ⊆ S, and a set of strong fairness requirements, S =
{〈L1, U1〉, . . . , 〈Lm, Um〉} where Li, Ui ⊆ S.

• An execution is an infinite sequence of states σ = s0s1s2 . . . ∈ Sω, where s0 is

the initial state, and for all i ≥ 0, (si, si+1) ∈ ρ.

• Computations, i.e. fair executions of the system, are sequences that obey the fairness

requirements
∧k

i=1 Inf(σ) ∩ Ji 6= ∅ and∧m
i=1(Inf(σ) ∩ Li = ∅ ∨ Inf(σ) ∩ Ui 6= ∅).
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Model checking a FCPN

• The constraints of FKS correspond to Generalised Büchi automata and Streett au-

tomata acceptance conditions respectively.

• The new procedure combines emptiness checking for Büchi and Streett acceptance

conditions

• We try to avoid using the more time consuming Streett emptiness checking procedure

if possible.

• The procedure has been implemented in the Maria tool.
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Previous Work

• Emerson and Lei: Fair-CTL model checking

• Knesten, Pnueli and Raviv: Symbolic Fair LTL model checking

• Latvala and Heljanko: LTL model checking for P/T nets with fairness constraints on

the transitions.

Slide 11 ICATPN 2001



A sliding window protocol
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A sliding window protocol

• Provides reliable transmission over an unreliable medium

• This version is due N.V. Stenning

• The model follows closely the model presented by R. Kaivola

• We wish to verify that as many targets should be delivered to the target as are read

from the data source. This holds only under a fairness constraint.
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The Maria model

• Using the powerful type system and algebraic operations of Maria, modelling is straight-

forward.

• Complete model: 12 places and 9 high-level transitions.

• Strong fairness constraints on receive-transitions of the sender and the receiver pro-

cesses.

• A weak fairness constraint is needed on the receiver side to guarantee progress in the

sequential parts.
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Results
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Conclusions

• We can do LTL model checking on high-level Petri nets with versatile fairness con-

straints on the transitions

• The procedure is much more efficient than specifying fairness as part of the property

to be verified

• The procedure has been implemented in the Maria tool and found to scale fairly well

• Effect on partial order methods?
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