
Model Checking LTL properties of High-Level Petri

Nets with Fairness Constraints

Timo Latvala∗
Helsinki University of Technology,

Laboratory for Theoretical Computer Science,

P.O.Box 9700, 02015 HUT, Finland

http://www.tcs.hut.fi/maria/

28th June 2001

∗This research was financed by the Helsinki Graduate School on Computer Science and Engineering, the
National Technology Agency of Finland (TEKES), the Nokia Corporation, Elisa Communications and
the Finnish Rail Administration.

http://www.tcs.hut.fi/maria/


Outline

• Why is fairness important?

• The old solution

• A new approach

• Case study: Sliding window protocol

• Conclusions

Slide 1 ICATPN 2001



Why is fairness important? (1/3)

• We usually distinguish between two classes of behavioural properties of distributed

systems

• Safety properties: “Something bad will never happen”

• Liveness properties: “Something good will eventually happen”

• In many cases liveness properties cannot be proven without making some assumptions.

• Fairness is considered a reasonable and useful assumption

Slide 2 ICATPN 2001



Why is fairness important? (2/3)

• Weak fairness: if an event is continuously enabled it will occur infinitely often

• Strong fairness: if an event is infinitely often enabled it will occur infinitely often

• Both weak and strong fairness can be expressed in LTL

• Weak fairness: 23(¬en ∨ oc).

• Strong fairness: 23(en) ⇒ 23(oc)

Slide 3 ICATPN 2001



Why is fairness important? (3/3)

1<true>

color B= bool
var x: P;

pending

<true>

requestquiet

<x> <x>

critical

release

key

<x>

<x>

<x>

<x>

goCrit

P P

P

B

color P = int with 1..N declare ms;P

<true>

• Accessibility does not hold if we do not assume that the transition goCrit is strongly

fair w.r.t. each instance.

Slide 4 ICATPN 2001



The old solution

• We remember that fairness can be expressed in LTL

• Thus we verify the formula“fairness ⇒ property”

• Sometimes an explicit scheduler has to be modelled, in order for this to work.

Slide 5 ICATPN 2001



Drawbacks of the old solution

• Model checking LTL is PSPACE-complete in the size of the formula

• May require changes in the model (adding scheduler)

• Adding scheduler can reduce the concurrency in the model, affecting some partial

order methods.

Slide 6 ICATPN 2001



Solution: Fair Coloured Petri Nets

A fair CPN (FCPN) is a triple ΣF = 〈Σ, WF , SF 〉, where Σ is a CPN, and WF =

{wf1 , . . . , wfk} is a set of weak fairness functions, where wfi is function from transitions

to boolean valued expressions. SF is the corresponding set of strong fairness functions.

• Fairness is made a part of the model

• The fairness functions singles out the instances which are to be treated fairly.

Slide 7 ICATPN 2001



Example

1<true>

color B= bool
var x: P;

pendingrequest

<true>

quiet

<x> <x>

critical

release

key

<x>

<x>

<x>

<x>

goCrit

P P

P

B

color P = int with 1..N declare ms;

sf_i:=
x==i

P

<true>

Slide 8 ICATPN 2001



Fair Kripke Structure

A fair Kripke structure (FKS) is a quintuple KF = 〈S, ρ, s0,W,S〉, where S is a

set of states, ρ ⊆ S × S is a transition relation and s0 ∈ S is the initial state.

• The fairness requirements are defined by a set of weak fairness requirements W =
{J1, J2, . . . , Jk} where Ji ⊆ S, and a set of strong fairness requirements, S =
{〈L1, U1〉, . . . , 〈Lm, Um〉} where Li, Ui ⊆ S.

• An execution is an infinite sequence of states σ = s0s1s2 . . . ∈ Sω, where s0 is

the initial state, and for all i ≥ 0, (si, si+1) ∈ ρ.

• Computations, i.e. fair executions of the system, are sequences that obey the fairness

requirements
∧k

i=1 Inf(σ) ∩ Ji 6= ∅ and∧m
i=1(Inf(σ) ∩ Li = ∅ ∨ Inf(σ) ∩ Ui 6= ∅).

Slide 9 ICATPN 2001



Model checking a FCPN

• The constraints of FKS correspond to Generalised Büchi automata and Streett au-

tomata acceptance conditions respectively.

• The new procedure combines emptiness checking for Büchi and Streett acceptance

conditions

• We try to avoid using the more time consuming Streett emptiness checking procedure

if possible.

• The procedure has been implemented in the Maria tool.

Slide 10 ICATPN 2001



Previous Work

• Emerson and Lei: Fair-CTL model checking

• Knesten, Pnueli and Raviv: Symbolic Fair LTL model checking

• Latvala and Heljanko: LTL model checking for P/T nets with fairness constraints on

the transitions.

Slide 11 ICATPN 2001



A sliding window protocol

Sender

R
eceiver

Channel

Channel
Ack.

send deliver

Transmission

Slide 12 ICATPN 2001



A sliding window protocol

• Provides reliable transmission over an unreliable medium

• This version is due N.V. Stenning

• The model follows closely the model presented by R. Kaivola

• We wish to verify that as many targets should be delivered to the target as are read

from the data source. This holds only under a fairness constraint.

Slide 13 ICATPN 2001



The Maria model

• Using the powerful type system and algebraic operations of Maria, modelling is straight-

forward.

• Complete model: 12 places and 9 high-level transitions.

• Strong fairness constraints on receive-transitions of the sender and the receiver pro-

cesses.

• A weak fairness constraint is needed on the receiver side to guarantee progress in the

sequential parts.

Slide 14 ICATPN 2001



Results

1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6
x 10

6 Sliding window protocol

Window size

states
arcs
product

Slide 15 ICATPN 2001



Results

1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6
x 10

4

Window size

Ti
m

e 
[s

]

Sliding window protocol

Slide 16 ICATPN 2001



Conclusions

• We can do LTL model checking on high-level Petri nets with versatile fairness con-

straints on the transitions

• The procedure is much more efficient than specifying fairness as part of the property

to be verified

• The procedure has been implemented in the Maria tool and found to scale fairly well

• Effect on partial order methods?

Slide 17 ICATPN 2001


